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Abstract. A model for a dynamic network consisting of changing local interactions is presented in this
work. While the network maintains solely local connections, certain properties known only to Small World
Networks may be extracted due to the dynamic nature of the model. At each time step the individuals are
grouped into clusters creating neighborhoods or domains of fully connected agents. The boundaries of these
domains change in time, corresponding to a situation where the links between individuals are dynamic only
throughout the history of the network. A question that we pose is whether our model, which maintains a
local structure such that diffusion calculations are possible, might lead to analytic or conceptual advances
for the much more complicated case of diffusion on a static disordered network that exhibits the same
macroscopic properties as our dynamic ordered network. To answer this, we compare certain properties
which characterize the dynamic domain network to those of a Small World Network, and then analyze the
diffusion coefficients for three possible domain mutations. We close with a comparison and confirmation of
previous epidemiological work carried out on networks.

PACS. 89.75.Hc Networks and genealogical trees – 89.65.-s Social and economic systems

1 Introduction

Diffusion through various types of media, be they disor-
dered, dynamic, or otherwise, offers a perplexing problem
present in many physical systems. The canonical exam-
ple of diffusion through an ordered homogenous lattice is
the process by which a particle randomly walks through
a certain viscous media. In such ordered media, random
walkers are considered to move probabilistically in discrete
steps from neighboring site to neighboring site. Given this
general abstraction, the idea may be applied to many
seemingly unrelated systems, such as the spread of disease
within a population, the step by step transfer of an idea
or meme amongst the members of a given society, or the
evolution of tradition through successive generations. The
study of diffusion in different media (where transitions
are not necessarily limited to local sites, but may include
jumps to distant sites), is thus highly applicable to cer-
tain social phenomena, among other applications within
computational complexity, neurobiology, and economic ex-
change. An obvious and problematic difference between
real social systems and the idealized diffusive model, is
that the structure of society is hardly an ordered lattice.
Not only do individuals interact with an immediate neigh-
borhood as well as distant nodes, but for real systems, the
structure of these connected clusters changes throughout
time. Diffusion in complex networks thus becomes quite
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complicated, as a diffusing state now moves through a dy-
namic network which maintains certain structural prop-
erties. We thus begin by considering a network topology
already composed of clusters of completely connected in-
dividuals. Only through time, do these clusters overlap
and interact, linking the clustered neighborhoods among
themselves locally as the system evolves.

A common aim of contemporary network studies is to
propose a model based on the local interactions among
nodes that compose a given network, which gives rise
to the global properties observed in the real systems to
be considered. The study of Small World Networks [1],
among other pioneering networks such as scale-free net-
works [2] and community networks [3], have done precisely
this. Two properties proposed in [4] have proved to be
useful within social systems; 1) a measure of clustering
among groups of connected nodes, and 2) a measure of
distance between any two given nodes on a graph. Real
social systems naturally give rise to closely knit clusters
of connected individuals, as a result of shared acquain-
tances. Furthermore, at least one member within a given
neighborhood is likely to be connected to a member within
another neighborhood. The effect of a few long range con-
nections within an ordered nearest neighbor network, is
that any two nodes are now connected by a surprisingly
small number of links. Other pertinent global properties
may of course be conceived. However, here we ask whether
the same two pervading properties may be found in
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different network models. Perhaps the Small World effect
is not unique to the Small World network as defined by [1],
and is in fact present in some form within other models
that retain a certain local structure.

In this work, we present a network model with a par-
ticular topology that effectively links entire neighborhoods
through local dynamic connections. The network structure
may be considered to be composed of many disconnected
subnetworks, or domains, each of which is completely con-
nected among the individual components within each do-
main. At every time step the domain boundaries are rede-
fined to encompass a different set of nodes. One may thus
consider an overlap of domains between successive time
steps, through which an active state, idea, or infection
is passed from one neighborhood to another. The restric-
tion to local interactions, via mutations of the domains
between two time steps, is rather relative. That is, it is
the relation between the entire system size to the local
interaction range, which permits one to declare local or
nonlocal interactions. Here we say local in that, all nodes
are connected up to a certain domain size. The maximum
domain size that we consider is relatively small with re-
spect to the system size, thus validating the claim that
though an active node spontaneously activates all nodes
within the domain, interactions are local.

As the domains change, new disconnected subnet-
works are created. It is through this redivision of sub-
networks, and subsequent interaction among connected
neighbors, and again redivision, that diffusion occurs. Cu-
riously, the dynamic domain networks (DDN) exhibit cer-
tain properties also present in other disordered networks,
such as Small World Networks where diffusion calcula-
tions are much more complicated if not altogether im-
possible. With new dynamic definitions, designed to be
analogous to those of SWNs, the dynamic domain model
demonstrates a sort of high clustering and a short average
path length combination, as a parameter which governs
the domain mutation process increases. Since the DDN ex-
hibits features of a disordered network, it might be a useful
tool with which to probe long range diffusion phenomena
within disordered media. Rather than try to characterize
diffusion through a complex disordered and dynamic net-
work, we propose to study some diffusive processes in a
network model that exhibits the macroscopic properties
of a disordered, dynamic network yet maintains a simple,
locally mutating, structure. The primary aspects that will
be examined in this work are,

– The validity of an alternative dynamic model that is
computationally simple, yet retains disordered proper-
ties of the well-established SWN. We demonstrate that
long range links are not necessary to minimize the dy-
namically adapted definition of path length, and max-
imize the dynamically adapted clustering coefficient.

– The underlying diffusive processes that occur in the
proposed model as the domains change according to
three different types of mutation (a domain shift, a
change in shape, or a change in size). The manner
in which the domains change their overlap with each

other between time steps, dictates a propagation veloc-
ity and thus a separate diffusion coefficient for each.

– The DDN model is rather unique in that it examines
the transmission of an active state not exclusively on
the level of the individual agents, but on the scale
of local domains. Domains may migrate through the
displacement probability, and/or fluctuate in size and
shape. These two fluctuations are naturally correlated,
as larger domains are more malleable in a discrete sys-
tem. Essentially in order to transmit an active state,
a domain of size one must be displaced. Whereas do-
mains which are larger may change shape and thus
transmit an active state solely through fluctuations
of the domain shape and size, though the domain re-
mains anchored spatially. This is an important aspect
of the DDN model and its applications to modelling
social systems. By dividing the dynamic into three sep-
arate, though not entirely uncorrelated dynamics, we
are able to analyze the propagation of an infection as
it is transmitted through groups of individuals. Fur-
thermore, the groups have a different dynamic mech-
anism than does a single individual. In the limit that
a group is composed of a single individual, we recover
the solely migratory dynamic behavior. Otherwise, one
must consider the fluctuations in group size and shape
which are necessarily correlated.

– A transition that is witnessed in epidemiological stud-
ies on SWNs [13], is observed here in the DDN model.
This comparison with real world observations suggests
a clear utility of the DDN model as a dynamic model,
simple in concept and computational design.

In the following sections, we outline the DDN model and
all definitions necessary to understand the underlying net-
work, imposed dynamic, and method of diffusion between
domains. Though the model may further be generalized to
include a sort of long range link, in section three we find
that this is not necessary to reproduce the Small World
effect. Since the propagation occurs through a specialized
local interaction, the diffusion is then analyzed by consid-
ering a random walk with different jump probabilities in
section four. Finally, we examine the validity of the DDN
by observing certain transitions in the infection rate of
the propagation of a disease, as the disorder (given by the
domain mutation probability) increases. The model has
been based on a two-dimensional projection of local so-
cial interactions. This aspect may suggest an immediate
applicability to certain real systems composed of spatially
dispersed groups of fully connected individuals. We thus
aim to examine the utility of such a computationally feasi-
ble dynamic model, and the diffusive processes that occur
upon the substrate of the network.

2 The model

The model is based on a two-dimensional matrix of static
individuals, each one situated on a node of a n×n lattice.
The entire lattice is divided into separate subnetworks,
or domains with rectangular boundaries. Each of these
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Fig. 1. Schematic representation of tessellations of the system
for the, (a) regular case, (b) overall displaced configuration, (c)
change in size, and (d) change in form.

N domains into which the individuals are grouped, com-
posing a fully connected subnetwork, is not connected to
any of the other subnetworks during each single time step.
That is, these disconnected subnetworks are only intercon-
nected when one observes the history of the entire network
and notes the overlap that occurs between domains in two
successive time steps. The initial configuration of the sys-
tem is what we call the regular case, in which all domains
have the same shape and size. The boundaries that de-
marcate the neighborhoods of the individuals, change at
every time step according to the rules yet to be explained.
As a consequence of the redivision of domains, a different
configuration of domains will be compared at every time
step. The original tessellation of the system will thus be
exchanged for a new one, and an overlap of domains be-
tween two consecutive time steps is measured, see Figure 1
for examples of possible domain tessellations. Though the
agents are static, the dynamic neighborhoods incorporate
those individuals sharing the same domain at a given time
step. The dynamic boundaries of the domains thus trans-
late into the dynamic connections between static individ-
uals. That is, the set of all individuals linked to a given
individual changes at every time step according to the dy-
namic domain boundaries. We consider rigid walls along
the borders of the entire n×n system, though this is fairly
insignificant since we measure the mean square displace-
ment and activation before an active state reaches the
boundaries.

As an example, let’s now consider the evolution of the
neighborhood of the node j. At time ti, some of the nodes
belong to the neighborhood Λj

i . They may still belong to
the same neighborhood at time ti+1, Λj

i+1, although some
may now pertain to a neighboring domain. While others

which were not linked to j at time ti, may now be within
Λj

i+1, the neighborhood of j at time ti+1. A simplified ver-
sion of this system was also examined in [9] to model mi-
nority opinion spreading. In this context, one might build
an interpretation of a population divided into separate
forums of discussion. Forums, or domains, reach a consen-
sus or equilibrium, and then transform and interact with
other forums as the domains between two successive con-
figurations overlap and allow interaction between certain
members of the previously separated forums. As the con-
figuration of the forums changes locally from ti to ti+1, the
recorded history of domain boundary mutation determines
the architecture of the underlying dynamic network.

A set of three processes govern the mutations of the
domain walls. At every time step, the entire set of do-
mains may be, 1) shifted from their former positions with
a probability pd; 2) undergo a change in size with a prob-
ability ps and/or; 3) change shapes with a probability pf ,
though they are required to remain convex (domains are
always squares or rectangles). The probabilities only give
rise to the possibility of change and do not dictate how
much change occurs in each process. Because of this, the
probability is defined to elect a tessellation out of all pos-
sible tessellations that have domains with a displacement,
different sizes, or different shapes. Each p = pd, ps, pf

vector characterizes a set of possible tessellations from
which one is elected. Refer to Figure 1 as an example
of possible tessellations from each of the three sets of tes-
sellations corresponding to p = 1, 0, 0, p = 0, 1, 0, and
p = 0, 0, 1. The new tessellation is the new configuration
of divided domains with which to evaluate the overlap
and to propagate and to activate states. Each of the three
processes may act separately or together (where each com-
bination p, defines a separate set of configurations from
which to choose), however there is some correlation be-
tween changes in shape and size. The larger a domain is,
the more shapes it may take on. This is a natural conse-
quence of having a discrete system. By reducing the do-
main size to one, only one shape is permitted, and we
recover the traditional random walker that can only move
through domain shifts. This limit is the same as consider-
ing diffusing particles which activate each other through
diffusive interaction. However, we are considering a more
general model where domains may be composed of a sin-
gle, diffusively migrating random walker and/or discrete
neighborhoods that not only migrate, but also fluctuate in
size and shape. This is an important aspect of the DDN
model and its applications to modelling social systems.
This approach looks at the transmission of an active state
not exclusively on the level of the interactions between
individuals, but on the scale of interacting neighborhoods
which are recognized to fluctuate in shape and size when
there is more than one node contained within. We observe
that the probability defined here is not the probability
for each domain to change placement, size, or shape, but
rather, it is a probability to elect or not a tessellation (a
configuration with full coverage) from a set of all possi-
ble tessellations that are composed of uniformly displaced



516 The European Physical Journal B

domains, different sized domains, or different shaped do-
mains.

Here we consider the extreme cases of domain change.
That is, we vary one mutation probability while holding
the other two constant at one or zero, and thereby look
at all tessellations where the domains have either shifted,
changed size, or changed shape. When all three take place
at the same time, a superposition of their effects occur.
The changes in size are limited to a magnitude no greater
than twice the regular domain size. Possible shapes are
limited to the given size, meaning that each size has a lim-
ited and different number of accessible rectangular shapes.
(This is a consequence of requiring convex domain forms).
Finally, a domain may not be displaced by a size more
than an other domain size per time step. These restrictions
thus preserve a varying local range of interaction through-
out the entire network. Naturally, for small system sizes,
these local interactions may become global. However, the
regular configuration and associated mutations are very
small compared to the system size (with domain size be-
tween N2 = 1 to N2 = 62, in a system of size n2 = 104 to
n2 = 107). In Figure 1 we show a schematic realization of
these three different processes.

3 Dynamic properties

To characterize certain global properties of the dynamic
network, we define quantities similar to those suggested
in [8]. A macroscopic variable analogous to the average
path length in SWNs is measured by considering a propa-
gation process throughout the system. We first distinguish
between active and inactive nodes. Initially, a single node
is chosen at random to be activated, which in turn, imme-
diately activates its entire domain. That is, any inactive
individual in a domain is immediately activated by the
presence of at least one active individual in the same do-
main. Once activated, the individual remains as such for
all time. The time necessary for an active state to propa-
gate across the system is a measure of the path length of
the entire dynamic network, in that counting the number
of iterations necessary to activate the entire system is a
measure of distance as well. Naturally, this activation time
is affected by the mutation probabilities of displacement
pd, size change ps, and form change pf . These probabili-
ties give rise to the amount of overlap between domains
over two successive time steps, and thus determine how
far the activation front extends and how quickly. For sys-
tem sizes of n2 = 104 to n2 = 107 nodes, we numerically
measure the activation time τi, as defined in [8], necessary
to activate the node i within the system,

τ =
1
n2

n2∑

i=1

τi. (1)

Next we define an average overlap between the domains
over two successive time steps as a parameter analogous to
the SWN clustering coefficient. Naturally, as the mutation
probabilities increase, the domains tend to have less over-
lap with the previous configuration. This is evident for the

Fig. 2. The bold line τ , and the dotted line ω, as functions of p
(the compact expression of a single varying mutation probabil-
ity), where p = pd(squares), p = ps (triangles), and p = pf

(circles). Non-varying p values are set equal to zero and τ
is normalized to the total activation time for the case when
p = 10−2.

case of domain displacement, however this is not so obvi-
ous for changes in shape or form since this is only true
for a statistically large number of events. Again, numeri-
cal calculation of the mean domain overlap is performed
using

ω =
1

τan2

τa∑

t

n2∑

i

ωi(t), (2)

where the summation over time is performed over all the
time steps until total activation at time τa is achieved. In
Figure 2 we plot the values of τ and ω for the particular
cases in which two of the three mutation probabilities are
zero and the remaining one varies from zero to one.

The mean overlap when displacement is not consid-
ered, may be probabilistically calculated with a binomial
distribution over all possible situations of overlapping do-
mains. For the moment, this calculation is simply intended
to encourage an interest in the possible resultant behav-
iors due to the different types of domain mutations. The
analytic calculations of the overlap ω for a varying ps or
pf , and their numerical comparisons are displayed in Fig-
ure 3. The lower curves correspond to changing either ps

or pf , while pd and the remaining p value are both zero.
The upper curves depict a varying ps or pf , while pd is
again equal to zero, but the remaining term is now con-
stant with a value of one. The continuous line is obtained
by analytic calculation on top of which we have plotted
the numerical results.

4 Propagation on the dynamic substrate

The model depicted thus far may be visualized as a two-
dimensional configuration of rectangular domains, chang-
ing at every time step with a probability associated with
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Fig. 3. The average overlap ω, as a function of p, where p = ps

(triangles), p = pf (circles), and pd = 0 in all cases plotted
here. Solid symbols indicate that the non-varying p parame-
ter is zero, whereas open symbols indicate the non-varying p
parameter is one.

each type of domain mutation. Between any two time
steps, there are different amounts of overlap between a
given initial domain, and its previous domain location,
shape, and size. A statistical sampling of overlaps through-
out the system gives one an idea of how much interaction
occurs between domains (also considered to be subnet-
works), for each mutation probability throughout time.
Overlap naturally only occurs between a domain, and a
mutation of the same domain. A given domain remains in
the local neighborhood between two successive time steps,
unless zero overlap occur, which is a situation that is not
permitted due to the mutation restrictions outlined pre-
viously. Since domains evolve through local probabilistic
mutations, the underlying process is actually diffusive. We
may thus count all possible domain shifts to calculate the
probability associated for a random walker to jump left,
right, up, down, or diagonal, on a two-dimensional lattice.
A random walker is placed in a given domain on the lat-
tice. As the initial domain mutates and shares overlap with
the neighboring local domains of a regular configuration,
the contained random walker jumps from the original do-
main center to the center of the overlapped domain. The
changing domain walls thus permit the random walker
to either remain in the initial domain, or move to neigh-
boring domains with probabilities that are related to the
mutation probabilities.

Indeed, the process may be considered as a diffusive
random walk, characterized by a probability distribution
particular to each dynamic process. Some work has pre-
viously been done with diffusion on top of SWNs [10,11].
In this system however, the diffusion is inherently part
of the model. The random walker is not a process that
occurs on top of a network, but a process that naturally
occurs as the domain walls change. The dynamic of the
network thus forces the diffusion of an active state, dis-
ease, or rumor. This aspect may play an important role

Fig. 4. The external square corresponds to the range of move-
ment of the initial domain (internal square). Darker grey areas
represent the region denoted by β and lighter grey areas rep-
resent regions denoted by α. Diffusive movement can thus be
decomposed into these directions.

in the real world counterpart of propagation phenomena.
Propagation is thus here woven into the topology of the
network.

An analytic understanding of the diffusive movement
may be developed by considering the possible domain mu-
tations and the directional jump probabilities α and β,
to be calculated. Consider the case of a dynamic domain
originally composed of nine sites. Two different jumps of
a centered random walker should be considered; those to
neighboring domains that share a side with the original
one with probability α, and those to any of the other four
domains along the diagonals with probability β, see Fig-
ure 4. The α and β probabilities for each of the three pro-
cesses are calculated by counting all of the possible overlap
situations that lead to a given jump, either to a side or
along the diagonal. By anchoring the center of a domain,
then considering all possible domain changes for each mu-
tation, and finally using symmetry arguments for the re-
maining three possible anchored corners, we have calcu-
lated the jump probabilities for each dynamic mutation
process. This is simply a counting method for all possi-
ble configuration mutations. For displacement αd = .1200,
βd = .0400, for size change αs = .0240, βs = .0039, and
for changes in form αf = .1111, βf = 0. With the jump
probabilities α and β, a prepared standard binomial distri-
bution may be used to evaluate the random walk process
and the associated diffusion coefficients of an active state
diffusing throughout the dynamic model.

Since we will later measure the mean square displace-
ment as a projection onto the x-axis, here we consider
the movement of a random walker only to the left and
right, and along the diagonals. The total probability to
move to the left is given by the sum of the probabili-
ties to move along either the left-up or left-down diag-
onal, and the probability to move directly to the left,
qL = p(α + 2β). The sum of the jump probabilities is
weighted by the probability that the domain mutates and
permits any movement at all: p, which again is the mu-
tation probability, a compact notation for the individual
probabilities to change location, size, or form. Due to the
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symmetry of the model qL = qR, the probability to jump
to the left is equal to that of the right. There are also
probabilities to move directly up and down (2α), or stay
in the same site, γ = 1−2p(α+2β). By performing a stan-
dard random walker calculation, we may derive a binomial
probability distribution of the displacement of a random
walker from the initial location. The following expression,
which depends only on the jump probabilities, has been
derived by first considering the characteristic function of
the sum of t statistically independent random variables.
This sum constitutes a random walk.

T (k) = (qL exp(−3ik) + qR exp(+3ik) + γ). (3)

The final location of the random walker as projected
onto the x-axis is given by the random variable x of the
Fourier transform of the characteristic function, which is
the probability distribution of x by definition. The cen-
tral limit theorem, and appropriate Stirling approxima-
tions (for t −→ ∞), may be used to derive a Gaussian
which characterizes the mean and variance of the spread-
ing active state. However, a more direct approach is to
recognize that the second moment is also defined by the
second derivative of the generating function with respect
to k and evaluating at k = 0 [12].

〈x(t)2〉 =
d2

dk2
(T (k))t

∣∣∣∣∣
k=0

. (4)

From this, the mean square displacement 〈x(t)2〉 = 2Dt
is easily calculated and found to be 2Dt = 18p(α + 2β)t.
By considering the appropriate jump probabilities for each
dynamic process as listed previously, we find that the dif-
fusion coefficients D, for each type of movement are given
by Dd = 1.80pd, Ds = 0.28ps and Df = 1.00pf .

In conjunction with the analytical interpretation of
this particular diffusive process, we have performed some
numerical simulations. The mean square displacement
〈X2〉, of the growing cluster of active individuals is evalu-
ated. From the analysis of this quantity throughout time,
we may numerically obtain a value for the diffusion co-
efficient. Figure 5 displays the diffusion coefficient as a
function of each of the three processes defined by ps, pd,
and pf and the corresponding analytical calculations as
solid lines. A fitting by minimum squares method gives us
the following numeric values of the diffusion coefficient:
Dd = 1.60pd, Ds = 0.27ps and Df = 1.00pf , which are in
good agreement with analytic predictions.

A further measurable property of diffusion through the
system is the evolution of the size of the cluster of active
individuals. For this we have evaluated the velocity of the
mean radius of the growing nucleus. The radius evolves
linearly with time and thus the velocity of propagation
v of the active state is easily calculated. In Figure 6, v
is depicted as a function of p for each dynamic process.
The inset shows v as a function of the mean overlap. It is
apparent from the figure that the velocity adopts a differ-
ent behavior for each of the three dynamic processes. This
value is studied for different sets of pd, ps, and pf .

Fig. 5. Diffusion coefficients as p varies, where p =
pd(squares), p = ps (triangles), and p = pf (circles). Solid
lines indicate the analytic calculation on which the numerical
results are plotted as solid shapes.

Fig. 6. The average velocity of propagation v as a function
of p, where p = pd(squares), p = ps (triangles), and p = pf

(circles). All mutation probabilities, aside from the one which
varies, are zero. The inset shows v as a function of the mean
overlap ω.

5 Disease propagation

To compare the results of the DDN model with those of a
SWN, we propose here an epidemiological model as a dif-
ferent type of propagative phenomena on top of the net-
work. This model introduces a threshold phenomena that
is not present in the previous activation process. The re-
sults of disease propagation within Dynamic Small World
Networks [13] is obtained in the following way. We con-
sider a standard model [14] for an infectious disease with
three stages: susceptible (S), infectious (I), and removed
(R). Any susceptible individual can become infected with
a given probability by an infected individual within the
same domain or neighborhood. A third epidemiological
state (R) and the probability to become infected are what
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Fig. 7. The fraction of infected individuals with respect to the
total population if , as a function of p, with p = pd(squares),
p = ps (triangles), and p = pf (circles).

distinguish the activation process on the DDN model and
the new propagative process. The infection cycle ends
when the element reaches the removed state after τr time
steps. The removed state is a permanent condition and
thus the individual cannot be infected again. The algo-
rithm goes as follows. At each step an infected element i
is chosen at random. If the time elapsed from the moment
ti when it entered the infection cycle up to the current
time t is larger than the infection time τr, the element i
becomes removed. Otherwise, one of its neighbors j of i is
randomly selected. If j is in the susceptible state, conta-
gion occurs. Element j becomes infected and its infection
time tj = t is recorded. If on the other hand, j is already
infected or removed, it preserves its state. Since each time
step corresponds to the choice of an infected individual,
the update of the time variable depends on the number
NI(t) of infected individuals at each step, t → t+1/NI(t).
Once there is no change in the number of infected indi-
viduals for the duration of time necessary for all infected
individuals to transform into the removed state R, the
process stops. Here we set τr = 3 for the infection time
which insures that for intermediate values of the p param-
eters, the disease spreads over a finite fraction of the pop-
ulation. Moreover, we consider an initial condition where
there is only one infected element; all the other elements
being susceptible. The considered initial condition thus
represents an initially localized disease. The infection will
remain localized during the initial stages and will propa-
gate according to the behavior of the domains. In Figure 7
we plot the proportion of total infected individuals if as
it varies with different values of p. Two of the p values are
maintained fixed while the remaining one varies between
zero and one.

In comparison with the results obtained in [13], we
find that the threshold values of p for disease propagation
are of the same order. The sharp transition from the non-

propagative regime to the propagative one as a function of
the structure of the network is one of the most interesting
aspects presented by epidemiological models on networks.
The maximum proportion of infected individuals shows
that a fraction of individuals remain not infected. Simi-
lar values of final infected individuals have been obtained
in [13]. The non-monotonic behavior of this quantity has
also been observed in other epidemiological models based
on Small World Networks [15]. A possible explanation for
the decrease of infection for large values of ps involves the
fact that in the DDN system, there is a bias towards de-
creasing the size of a domain. A high level of dynamics
will temporally isolate infected individuals. It is because
of this limitation of the model that the infection cannot
propagate as efficiently for large ps and a smaller number
of infected individuals is detected.

6 Conclusions

Though the DDN model is only constructed with local
connections, we aim to compare the system presented here
with previous work on dynamic Small Worlds with long
range connections. The local nature of the connections in
the present model is due to the fact that new links are
only to be established with nodes occupying neighboring
domains. It is interesting that we still observe prominent
properties analogous to those found in SWN models with-
out local restrictions. The parameters describing neighbor-
hood overlap ω and mean persistence time τ indicate be-
havior synonymous with the SWN clustering and average
path length, respectively. That is, there exists a region in
the p parameter space when the system displays a mixture
of the two limiting cases, namely relatively high overlap
and relatively low activation time. Furthermore, epidemi-
ological threshold phenomena is reproduced in the DDN
model without the necessity of SWN short cuts. Though
no analysis of how the domain size scales with these quan-
tities was done, qualitative similarities ought to be noted.
While some SWN results may be reproduced in the DDN
model, the latter may provide a more realistic description
of social and cultural behavior. Domains mutate and mi-
grate as entire clusters on a global level, rather that local
or individual level as occurs in SWNs. Interesting results of
the spread of minority opinion have been obtained in [9]
by considering a particular case of the model presented
here.

We have assumed that underlying diffusion is actually
built into the model, as an inherent aspect of the imposed
dynamic. Three types of diffusive movement may be an-
alyzed. A diffusion coefficient was numerically as well as
analytically calculated for the three dynamic processes, ps,
pf , and pd. This demonstrated the diffusive contribution
of each type of domain mutation. As a final application
and point of comparison with previous work, we analyzed
the propagation velocity and outbreak transition of an
infection. For small p values, an initial infection cannot
propagate. At a given p value, propagation is possible and
grows rapidly to a maximum infected fraction of the en-
tire population as p increases. The threshold values are
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similar to those previously observed for a dynamic SWN.
In this case, we show that despite the fact that there is
a transition around the same value of p, the behavior of
the system strongly depends on which dynamic domain
process governs the dynamics of the system. We are thus
permitted to observe the different effects and relative im-
portance of the three separate means of diffusion for each
type of mutation, on the spread of a disease, rumor, or
meme.

M.B. would like to thank the OAS for partial support.

Appendix

In our model for the random walker, we consider two
stages. The first one takes into account the probability
of the movement or jump to be accepted p. This parame-
ter denotes the mutation probability, a compact notation
for the probabilities to change location, size, or form. The
second stage accounts for the movement of the individual
to any of the allowed directions. Since the random walk
is isotropic and symmetric, lets consider the projection of
the movement of a 2D random walker onto the x -axis. As
mentioned before, given that a movement of the walker is
accepted with probability p, the conditional probability to
move to the left is given by the sum of the probabilities to
move along either the left-up or left-down diagonal, and
the probability to move directly to the left. Finally we
have qL = p(α + 2β) according to Figure 4. Accordingly,
by symmetry, the probability to move directly to the right
is qR = qL = q. There are also probabilities to move di-
rectly up and down (2α), that when projected onto the
x -axis, are equivalent to a situation when the walker re-
mains static with respect to the x -axis. The probability to
remain static is thus qS = γ = 1 − 2p(α + 2β).

With a standard homogenous 1D random walker cal-
culation, we can extract the diffusion coefficient from the
second moment of the displacement, or the mean square
displacement 〈x2〉,

D =
〈x(t)2〉

2t
,

where t is time or the number of time steps. The mean
square displacement can be calculated from the hopping
matrix, which is composed of all transition probabilities
between random walker sites. In our case, due to spatial
invariance, the probability of transition from a site x to
another x′ can be written as

T (x, x′) = T (x − x′)
= qLδx,x′−3 + qRδx,x′+3 + qSδx,x′

= p(α + 2β)(δx,x′−3 + δx,x′+3) + γδx,x′.

The corresponding characteristic function is the discrete
Fourier transform of the former expression,

T (k) = p(α + 2β)(exp(−3ik) + exp(+3ik) + γ)
= (2q cos(3k) + γ). (5)

The mean square displacement can be now calculated as,

〈x(t)2〉 =
∂2

∂(k)2
(T (k)t)P (k, 0)

∣∣∣∣
k=0

where P (k, 0) is the Fourier transform of the initial con-
dition P (x, 0), the probability that the walker is at x
at time t = 0. We consider the initial condition to be
P (x, 0) = δx,0. We must thus solve,

〈x(t)2〉 =
∂2

∂(k)2
(2q cos(3k) + γ)t

∣∣∣∣
k=0

= 18qt(2q + γ)(t − 1).

Since (2q+γ) = 1 due to normalization, we finally recover

〈x(t)2〉 = 18p(α + 2β)t.

and thus D = 9p(α + 2β).
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